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Abstract. Analytical calculations based on finite-size spin-wave theory and Monte Carlo (MC)
simulations are performed to investigate the validity of the well-known relation m(H,T ) =
M(H,T )BD[M(H,T )NH/T ] between the induced magnetization m of the magnetic particle and its intrin-
sic magnetization M for the Ising and isotropic classical models (BD(x) is the Langevin function, D is the
number of spin components, N is the number of atoms in the particle). It follows from general arguments
and from our analytical results for the Heisenberg model at T � Tc that this relation is not exact for any
finite D and nonzero temperature. Nevertheless, corrections to this formula remain very small practically
in the whole range T < Tc if N � 1, as confirmed by our Monte Carlo calculations. At T . Tc/4 there
is a good agreement between the MC and finite-size spin-wave calculations for the field dependence of m
and M for the Heisenberg model with free boundary conditions.

PACS. 75.50.Tt Fine particle systems – 75.10.Hk Classical spin models

1 Introduction

For magnetic particles of a finite size one can generally
define two magnetizations,m and M, the relation between
which is frequently written in the form

m = MBD(Mx), x ≡ NH/T, (1)

where BD(x) is the Langevin function (BD(x) = B3(x) =
cothx − 1/x for the isotropic Heisenberg model and
BD(x) = B1(x) = tanhx for the Ising model) and N
is the number of magnetic atoms in the system. Here m
is the magnetization induced by the magnetic field and
microscopically defined as the thermodynamic average of
the vector

M =
1
N
∑
i

si, (2)

i.e.,

m = 〈M〉 · (3)

For classical systems discussed throughout this paper, si
can be considered, up to a factor, as spin vectors of unit
length, |si| = 1. The magnetization M in equation (1)
can be interpreted as the intrinsic magnetization of the
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particle which is defined through the correlation function
of the magnetic moments,

M =
√
〈M2〉 · (4)

If the temperature is low, all spins in the particle are
bound together by the exchange interaction and M be-
haves as a rigid “giant spin”, |M| ∼= M ∼= 1, which shows
a superparamagnetic behavior. If a magnetic field H is ap-
plied, M exhibits an average in the direction of H, which
leads to a nonzero value of the induced magnetization m
given, obviously, by equation (1). The question of prin-
cipal interest is, however, the field dependence of M at
nonzero temperatures, which can be responsible for de-
viations from the simple superparamagnetic behaviour of
equation (1).

Early Monte Carlo (MC) simulations by Wildpaner [1]
for the classical Heisenberg model, where both magnetiza-
tions were determined independently as functions of field
at different temperatures, confirmed equation (1) within
numerical errors. However, from the theoretical point of
view this relation with M = M(H,T ) is unexpected.

On the theoretical side, equation (1) was obtained in
reference [2] for a classical model and in reference [3] for
a quantum model but without the field dependence of M .
Earlier, Fisher and Privman [4] considered the spin-wave
contribution to equation (1) but, again, the field depen-
dence of M was not studied explicitly.
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Experimentally, the field dependence of M and, in par-
ticular, the nonsaturation of the magnetization in the re-
gion x & 1 have been observed in nanoparticles by differ-
ent groups [5–7]. Usually this dependence is close to linear
and is used to extract the value of M at zero field by ex-
trapolation to H = 0. For the isotropic Heisenberg model,
the field dependence of M in the range x & 1 is due to
suppression of the fluctuations of individual spins, i.e., of
spin waves, and this dependence disappears for T → 0.
The dependence M(H) is much stronger and persists at
zero temperatures if the spins in the particle are not per-
fectly collinear due to surface effects [7].

In our recent paper [8] (see also Ref. [9]) we have shown
that this relation becomes exact for the exactly solvable
model of the D-component classical vector “spins” in the
limit D→∞. Nevertheless, for more realistic models such
as the classical Heisenberg model (D = 3) and the Ising
model (D = 1), it is very difficult to believe that the super-
paramagnetic relation holds for all temperatures. Clearly,
if the number N of atoms in the particle is large and
the temperature is below Tc, then the argument of the
Langevin function in equation (1) becomes large already
for so small fields that M does not essentially deviate from
its zero-field value. Under these conditions equation (1)
should be a good approximation. On the other hand, for
smaller particles and near or above Tc, there should be
deviations from the simple behavior, the study of which
is the purpose of this work.

The structure of the rest of this article is as follows.
In Section 2 using the low-field expansion of m and gen-
eral arguments we show that equation (1) is not exact for
any finite value of D and nonzero temperatures. In par-
ticular, in the high-temperature limit there is another an-
alytic form of equation (1) with BD substituted by B∞.
In Section 3 we present an explicit calculation of both
m(H,T ) and M(H,T ) at low temperatures with the help
of a spin-wave theory which separates the global-rotation
mode and the k 6= 0 spin-wave modes. In Section 4 we
perform high-accuracy MC simulations for the Ising and
classical Heisenberg models in the box geometry to illus-
trate the superparamagnetic behavior in a wide range of
parameters.

2 Basic relations

We use the classical spin-vector Hamiltonian

H = −H
∑
i

si −
1
2

∑
ij

Jijsi · sj , |si| = 1, (5)

where s is a D-component vector (D = 1 for the Ising
model and D = 3 for the Heisenberg model). For this
Hamiltonian one can prove an identity relating correla-
tions functions and susceptibilities

M2 = m2 +
dm
dx

+
(D − 1)m

x
, (6)

where x is given by equation (1). On the right-hand side
of equation (6), the second and third terms are contribu-
tions from the longitudinal and D−1 transverse suscepti-
bilities, respectively. This relation can be used to extract
the value of M(H,T ) from measurements of the induced
magnetization m and susceptibilities. Let us demonstrate
how it works at low fields, where the expansion of m can
be written as

m ∼=
a2

D
x− c4

D2(D + 2)
x3. (7)

Applying equation (6) one readily obtains

M ∼= a+
a4 − c4
2aD2

x2. (8)

At zero temperature the magnetic moment of the particle
can be considered as a rigid spin, thus in equation (7)
a = c = 1 which results in M = 1, independently of the
field. At T > 0 one has a < 1 and c < a, so that M
increases with the field. The coefficients a and c can be
calculated analytically at low and high temperatures (see,
e.g., Eq. (60)). Let us check now what happens if we try
to find M from equation (1) under the same conditions.
One can write

m ∼= M2

D
x− M4

D2(D + 2)
x3, M ∼= M0 +M2x

2, (9)

and find the coefficients M0 and M2 from the condition
that m here coincides with that of equation (7). The re-
sult is equation (8) with D2 → D(D+2). This is clearly a
wrong result for any finite value of D and nonzero temper-
ature. Only in the limit T → 0 the coefficient M2 vanishes
and both approaches yield the same trivial result. There-
fore, one cannot use equation (1) to take into account the
field variation of M in the range where the argument of B
is of order one or less. This formula can only be correct
in the case of large particles for which the change of M in
this field range is very small and M actually changes for
much larger fields where we already have m ∼= M.

On the other hand, using these results one can find the
correction to equation (1) at low fields. To this end, one
can write

m = MB(Mx) + δ, (10)

expand it for x � 1 using equation (8) and equate the
result to equation (7) to find δ. The result is

δ = −2(a4 − c4)
D + 2

x3

D3
< 0, (11)

that is, the Langevin function BD in equation (1) should
be replaced by some function F which goes below BD at
nonzero temperatures.

In the high-temperature limit one can find an explicit
form of the superparamagnetic relation which also differs
from equation (1). Indeed, at high temperatures the ex-
change interaction can be neglected and one has to solve
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a one-spin problem, which yields

m = B(ξ), M2 = m2 +
1
N

(
B′(ξ) + (D − 1)

B(ξ)
ξ

)
,

(12)

where ξ ≡ H/T. Using this relation, one can plot m/M
vs. xM ≡ Mx and thus obtain the scaling function F (x)
which replaces BD(x) in equation (1). For large particles,
N � 1, in the relevant region xM ∼ 1 one has ξ � 1
and the second of equations (12), with the use of B′(ξ) ∼=
B(ξ)/ξ ∼= 1/D, simplifies to

M2 = m2 +Dm/x. (13)

On the other hand, this relation holds in the large-D limit
for all temperatures, particle sizes, and types of boundary
conditions, and it can be obtained from equation (6) by
dropping the term dm/dx and replacing D−1→ D. Solv-
ing this equation for m yields the scaling function of the
spherical model

F (x) = B∞(x) =
2x/D

1 +
√

1 + (2x/D)2
, (14)

in equation (1) which goes below BD(x) for any finite D.

3 Spin-wave theory for finite-size magnetic
particles

3.1 General

At low temperatures all spins in the particle are strongly
correlated and they form a “giant spin” M (see Eq. (2))
which behaves superparamagnetically. In addition, there
are internal spin-wave excitations in the particle which
are responsible at nonzero temperatures for the fact that
M < 1 and for the field dependence of M . In our case
of three-dimensional particles, d = 3, these excitations
can be described perturbatively in small deviations of in-
dividual spins si from the direction of M. To this end,
it is convenient to insert an additional integration over
dM = MD−1dMdn in the partition function,

Z =
∫
MD−1dMdn

∏
i

dsiδ

(
M− 1
N
∑
i

si

)
e−H/T ,

(15)

and first integrate over the magnitude M of the central
spin (this variable appears locally and it should not be
confused with the intrinsic magnetization M defined by
Eq. (4)). To do this, one should reexpress the vector argu-
ment of the δ-function in the coordinate system specified
by the direction of the central spin n, which yields

δ

(
M− 1
N
∑
i

si

)
= δ

(
M− 1
N
∑
i

(n · si)
)

× δ
(

1
N
∑
i

[si − n(n · si)]
)
. (16)

Then after integration over M one obtains

Z =
∫

dnZn, (17)

where

Zn =
∫ ∏

i

dsiδ

(
1
N
∑
i

[si − n(n · si)]
)

e−Heff/T (18)

and

Heff = −(n ·H)
∑
i

(n · si)−
1
2

∑
ij

Jijsi · sj

−(D − 1)T ln

[
1
N
∑
i

n · si

]
. (19)

In equation (18), the δ-function expresses the obvious con-
dition that the sum of all spins does not have a component
perpendicular to the central spin M. This will lead to the
absence of the zero Fourier component of the transverse
fluctuations of spins in the particle. The corresponding
global-rotation Goldstone mode (which is troublesome in
the standard spin-wave theory for finite systems) has been
transformed into the integration over the global variable n
in equation (17) in the present formalism. The condition
mentioned above was also used to transform the Zeeman
term in equation (19). This describes now the spins si in a
field in the direction n and with the strength n ·H. As we
will see below, the last term in equation (19) is nonessen-
tial in the leading approximation at low temperatures.

To calculate Zn at low temperatures, one can expand
Heff up to the bilinear terms in the transverse spin com-
ponents

Πi ≡ si − n(n · si) (20)

using

n · si =
√

1−Π2
i
∼= 1−Π2

i /2. (21)

This yields

Heff
∼= E0 −Nn ·H +

1
2

∑
ij

AijΠ i ·Πj ,

Aij ≡
[

(D − 1)T/N + n ·H+
∑
l

Jil

]
δij − Jij , (22)

where E0 = −(1/2)
∑
ij Jij is the zero-field ground-state

energy. For the lattice sites inside the particle or for the
model with periodic boundary conditions one has z = 2d,
where d is the spatial dimension; for the sites on the
boundaries zi < 2d. Now Zn in equation (18) takes on
the form

Zn
∼= exp

(
−E0 +Nn ·H

T

)
ND−1

∫ ∞
−∞

∏
i

D−1∏
α=1

dΠα
i

×δ
(∑

i

Π i

)
exp

− 1
2T

∑
ij

AijΠi ·Πj

 , (23)
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which after working out the Gaussian integral over Πα
i

yields

Zn
∼= exp

(
−E0 +Nn ·H

T

)
ND−1

[
(2πT )N−1

detA′ij

](D−1)/2

,

(24)

where the matrix A′ij is obtained from Aij of equation (22)
by elimination of Πi on one of the N lattice sites using
the condition

∑
iΠ i = 0.

Equation (24) is a general result which is valid for a
particle of arbitrary shape and for different types of ex-
change interaction Jij and boundary conditions. In the fol-
lowing subsection we will consider particles of cubic shape
with the nearest-neighbour interactions and free and pe-
riodic boundary conditions (fbc and pbc).

3.2 Free and periodic boundary conditions

Let us express the matrix Aij through its eigenfunctions
fki as follows

Aij =
∑
k

f∗kiAkfkj , (25)

where fki satisfy ∑
i

fkiAij = Akfkj (26)

and form an orthonormal and complete basis∑
i

f∗kifk′i = δkk′ ,
∑
k

f∗kifki′ = δii′ . (27)

In this basis, the sum over ij in equation (23) can be
rewritten as∑

ij

AijΠ i ·Πj =
∑
k

AkΠ
∗
k ·Πk, (28)

where

Πk ≡
∑
i

fkiΠi. (29)

Now one can make the observation that in the set of
eigenfunctions fki there is one which is independent of
i and which can be conveniently ascribed to k = 0, i.e.,
f0 = 1/N . This follows since∑

i

Aij = A0 = (D − 1)T/N + n ·H (30)

is independent of j, A0 being the zero-k eigenvalue. Now
one can see that δ (

∑
iΠ i) in equation (23) excludes inte-

gration over the zero mode Π0 in the new representation.
Fluctuations of the components Πk with k 6= 0 yield mul-
tiplicative contributions to the partition function, so that

one is left with the integrals over Πα
k . If the eigenfunc-

tions fki are real, one obtains

Iαk =
∫ ∞
−∞

dΠα
k exp

[
−Ak

2T
(Πα

k )2

]
=
(

2πT
Ak

)1/2

· (31)

If fki are complex, one has to integrate independently
over the real and imaginary components xαk and yαk of
Πα
k = xαk + iyαk which gives 2πT/Ak. Complex eigenfunc-

tions arise, however, only in the case of periodic boundary
conditions where, as we shall see, one has to take into ac-
count only a half of the k modes, which effectively restores
the result of equation (31). So let us consider for the mo-
ment only systems with real eigenfunctions. In this case,
integrating over (N − 1)(D − 1) modes (N − 1 k-modes
multiplied by D − 1 transverse spin components) for Zn

one obtains equation (24) with

detA′ij =
∏
k

′Ak
N , (32)

where the prime on the product means that the mode with
k = 0 is omitted.

All the results above are still general. Now we will con-
sider cubic-shaped particles with free and periodic bound-
ary conditions. In the fbc case the matrix Aij has the form

Aij = A0δij +∆
(x)
ij +∆

(y)
ij +∆

(z)
ij , (33)

where A0 is given by equation (30) and

∆
(x)
ij = −J [δix,jx−1 + δix,jx+1 − δix,jx(2− δjx,1 − δjx,N )]

× δiy ,jyδiz ,jz , (34)

etc., δix,jx are Kronecker symbols, and ix, jx = 1, . . . , N .
If jx−1 or jx+1 run out of the particle, the corresponding
δix,jx−1 or δix,jx+1 should be omitted. One can see that
∆

(x)
ij is a discrete Laplace operator for the coordinate x,

and the eigenvalue problem factorizes. The eigenfunctions
are standing waves and they can be written in the form

fki = fix,kx × fiy,ky × fiz ,kz , (35)

where for α = x, y, z

fiα,kα =

√
2

(1 + δkα,0)N
cos[(iα − 1/2)kα],

kα = πnα/N, nα = 0, 1, . . . , N − 1. (36)

For the eigenvalue Ak one obtains

Ak = A0 + Jk − J0. (37)

In the case of periodic boundary conditions, one should
drop the terms δjx,1 and δjx,N and identify ix = N + 1
with ix = 1 in equation (34). The eigenfunctions can be
conveniently taken in the form of plane waves e−ikri with
the wave vectors quantized as kα = 2πnα/N , the eigen-
value Ak having the same form as in the fbc case. That
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is, the pbc and fbc models differ only by the quantization
of the wave vector

kα =

{
2πnα/N, pbc

πnα/N, fbc
, nα = 0, 1, ..., N − 1 (38)

where α = x, y, z. This subtle difference is responsible for
much stronger thermal fluctuations in the fbc model due
to surface effects, as we shall see below.

3.3 The partition function

Collecting the formulae obtained above, one can write
down the expression for Zn in the form

Zn
∼= Ãexp

(
n · x +N D − 1

2
f(Gn)

)
, (39)

where Ã is given by the first line of equation (56) below,

x ≡ NH/T (40)

is the reduced field, the function f(Gn) is defined by

f(Gn) ≡ 1
N
∑
k

′
ln

Gn

1−Gnλk
, (41)

with λk ≡ Jk/J0 = (cos kx + cos ky + cos kz)/d, and

Gn ≡
1

1 + an

∼= 1− an, an ≡
T

NJ0
(n · x+D − 1)� 1.

(42)

Note that the angular dependence of Zn is more compli-
cated than that for rigid spins because of the internal spin-
wave modes described by the last term in equation (39).
These SW modes have a gap accounted for by the first two
terms in the denominator of equation (32) or the dimen-
sionless parameter an in equation (42). One contribution
to the gap is due to the finite size of the particle and the
other is due to the magnetic field. The latter depends on
the orientation of the particle’s magnetic moment n with
respect to the field.

The function f(Gn) of equation (41) can be written as

f(Gn) = f(1)−
∫ 1

Gn

du
P̃N(u)
u

, (43)

where f(1) is a constant and

P̃N (G) ≡ 1
N
∑
k

′ 1
1−Gλk

(44)

is the lattice Green function. Since at low temperatures
the argument G in the expressions above is close to 1, it
is convenient to write

P̃N (G) = P̃N (1)− 1
N
∑
k

′ (1−G)λk

(1−Gλk)(1− λk)

= WN −N(1−G)fP (1−G), (45)

where WN ≡ P̃N (1). Here, if the linear size N is not
large, one can replace G → 1 in the argument of the
function fP . For N � 1 the situation becomes more com-
plicated since the wave vectors k come closer to the ori-
gin and a singularity is formed. For the system with free
boundary conditions, the sum is dominated by k � 1, so
that λk

∼= 1− k2/(2d) and fP (y) has the form

fP (y) ∼= (2d)2

π4

∞∑
nx,ny,nz=0

′ 1
(y + n2)n2

(46)

with n2 = n2
x + n2

y + n2
z and

y ≡ 2d(1−G)(N/π)2. (47)

For y � 1 one can set y = 0 which yields fP (y) ∼= fP (0) =
cfbc ' 1.90, whereas for y � 1 one can replace summa-
tion by integration and calculate the integral analytically.
For the model with periodic boundary conditions, there
are different contributions from different corners of the
Brillouin zone in equation (45), and one obtains a more
cumbersome analogue of equation (46). In practice, it is
easier to compute fP from its definition in equation (45).
For three-dimensional cubic particles the limiting cases
are (1−G� 1)

P̃N (G) ∼= WN −
{
cNN(1−G), y � 1

c0
√

1−G, y � 1,
(48)

where for large N the value of WN approaches the Watson
integral W = 1.51639 according to [8]

∆N ≡
WN −W

W
∼=


−0.90

N
, pbc

9 ln(1.17N)
2πWN

, fbc
(49)

(notice the positive sign for the fbc model). For the sim-
ple cubic lattice c0 = (2/π)(3/2)3/2. The numerically ob-
tained results for cN can, for N � 1, be fitted as

cN ∼=
{

0.384− 1.05/N, pbc

1.90− 1.17/N, fbc
(50)

(see Fig. 1). The square-root term in equation (48) de-
scribes the spin-wave singularity in the infinite system.
From equations (47) and (42) it follows that the crossover
to the bulk spin-wave behavior occurs for the values of the
reduced field x & xS ∼ NJ0/T which is much larger than
the value x ∼ xV = 1 corresponding to the suppression
of the global rotation of the particle’s magnetic moment.
The actual crossover fields, in notations of reference [4],
are given by

HV =
T

N � HS =
π2

2d
J0

N 2/3
, (51)

that is, they are widely separated from each other in our
case with T/(NJ0) � 1. Thus the result for the func-
tion f(Gn) of equation (43), which with the help of equa-
tion (45) can be written as

f(Gn) ∼= f(1)− anWN +N

∫ an

0

da afP (ya) (52)
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Fig. 1. Finite-size effect on cN ≡ fP (0) (see Eq. 45)) for cubic
systems with free and periodic boundary conditions.

with ya ∼= 2da(N/π)2, can be simplified in different field
ranges.

For H � HS one can replace fP (ya) by cN to obtain,
in equation (39),

N D − 1
2

f(Gn) ∼= N
D − 1

2
f(1)− t(n · x +D − 1)

+α(n · x +D − 1)2
, (53)

where

t ≡ D − 1
2

WNT

J0
, α ≡ (D − 1)cN

4N2

(
T

J0

)2

(54)

are small parameters, α � t � 1. Since αx2 ∼
(H/HS)2 � 1, one can expand the partition function Z
of equations (17) and (39) with respect to the last term of
equation (53), which yields

Z ∼= Ã′
∫ 1

−1

du(1− u2)(D−3)/2

× exp {[1− t+ 2α(D − 1)]ux}
[
1 + α(ux)2

]
(55)

where

Ã′ = ND−1 (2πNT/J0)(D−1)(N−1)/2 e−E0/T

×e(D−1)[Nf(1)/2−t]SD−1 (56)

and SD = 2πD/2/Γ (D/2) is the surface of the D-
dimensional unit sphere. In fact, we have left the term
proportional to αux in equation (55) not expanded for the
sake of convenience. Integration in equation (55) results in

Z ∼= Z0{[1− t+ 2α(D − 1)]x}+ αx2 d2Z0

dx2
, (57)

where Z0{[1− t+2α(D−1)]x} is the partition function of
the rigid magnetic moment with the magnitude reduced
by the factor 1− t+ 2α(D − 1).

3.4 The superparamagnetic relation

Using

1
Z0

d2Z0

dx2
= B2 +B′ = 1− (D − 1)B

x
, (58)

where B = B(x) is the Langevin function, for the induced
magnetization m one obtains

m =
d lnZ

dx
∼= [1− t+ 2α(D − 1)]

×B{[1− t+ 2α(D − 1)]x}
+ α[2x− (D − 1)(B + xB′)]

∼= [1− t+ α(D − 1)]
×B{[1− t+ α(D − 1)]x}+ 2αx. (59)

Expanding the expression for m for x� 1 leads to equa-
tion (7) with the explicit values of the parameters

a2 = [1− t+ α(D − 1)]2 + 2αD,
c4 = [1− t+ α(D − 1)]4. (60)

Note that in the region x � 1, where a rigid magnetic
moment would saturate, m continues to increase linearly
as m ∼= 1 − t + α(D − 1) + 2αx. This is due to the field
dependence of the intrinsic magnetization M . The latter
can be calculated from equation (6) which leads to

M ∼= 1− t+ α(2D − 1) + 2αxB(x). (61)

This formula describes a crossover from the quadratic field
dependence of M at low field, x� 1, to the linear depen-
dence at x� 1.

Now we are in a position to calculate the correction to
equation (1) at low temperatures and x ∼ 1. To this end,
one can write m in the form of equation (10), expand it
with respect to α � 1 and equate to the expanded form
of equation (1). This gives

δ = α [2x− (D + 2xB)(B + xB′)] , (62)

which has a negative value. In particular, for x � 1 one
has δ ∼= −8αx3/[D2(D+2)] (cf. Eq. (11)). It can be shown
that δ → 0 in the large-D limit. Since α defined by equa-
tion (54) contains N2 in the denominator, δ remains small
even if T ∼ J0. This is an indication that equation (1) is a
very good approximation for not extremely small systems
in the whole range below Tc. It can be shown that for
N � 1 crossover to the high-temperature form of equa-
tion (1) specified by the function B∞(x) of equation (14)
occurs in a close vicinity of Tc.

At higher fields H ∼ HS there is another crossover to
the standard spin-wave-theory result for M. Here one has
x � 1, thus the integral in equation (17) is dominated
by n · x ∼= x. Replacing n · x → x in the last term of
equation (52) one obtains

Z ∼= Z0[(1− t)x] exp
[
D − 1

2
N 4/3

∫ ax

0

da afP (ya)
]

ax ∼= xT/(NJ0) = H/J0, (63)
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which yields

m ∼= M ∼= 1− D − 1
2

T

J0

[
WN −

H

J0
NfP

(
H

HS

)]
, (64)

where the function fP (y) is defined by equation (45) and
HS is defined by equation (51).

Let us now write down the explicit forms of the field
dependence of the intrinsic magnetization M in the three
different field regions

M ∼= 1− t+



D − 1
2D

cN

(
HN2

J0

)2

, H � HV

D − 1
2

cN
NHT

J2
0

, HV � H � HS

D − 1
2

c0
T

J0

(
H

J0

)1/2

, HS � H � J0.

(65)

Here t � 1 is defined by equation (54). In the second
and third field ranges, the particle’s magnetic moment is
fully oriented by the field, thus m ∼= M, the spin-wave
gap in equation (32) has the value H, as in the bulk,
and the field dependence of both magnetizations follows
that of the function P̃N (G) of equations (45) or (48) with
1 − G ∼= H/J0 (see Eq. (42)). The region H � HV in
equation (65) is less trivial. Here the gap in equation (32)
is n ·H and depends on the orientation of the particle’s
magnetic moment which is not yet completely aligned by
the field. Effectively one has in this region n ·H ∼H2,
which leads to a quadratic field dependence of M . In fact,
such a dependence at smallest fields already follows from
general principles, see Section 2, and is pertinent to the
Ising model as well.

To conclude this subsection, we introduce the
orientation-dependent “macroscopic” particle’s magneti-
zation Mn according to

Mn ≡
∂ lnZn

∂x
, (66)

where Zn and x are defined by equations (18) and (40),
respectively. Using this definition, for the induced magne-
tization m ≡ ∂lnZ/∂x one can write

m =
∫

dn MnZn∫
dnZn

· (67)

Mn can be interpreted as M of equation (4) with the
spin-wave modes integrated out. From equation (39) one
obtains

Mn =

[
1− D − 1

2
T

J0

P̃N (Gn)
Gn

]
n, (68)

which for H � HS can be written as

Mn
∼= [1− t+ 2α(n · x +D − 1)] n. (69)

The magnitude of the particle’s magnetization, Mn ≡
|Mn|, depends on its orientation due to spin-wave effects.
It attains its maximal value 1 − t + 2α(x +D − 1) if the
particle’s magnetization is directed along the field H and
its minimal value 1− t+2α(−x+D−1) in the thermody-
namically unfavorable state with magnetization against
the field. It should be stressed that in order to obtain
the explicit result for the induced magnetization, equa-
tion (59), from equation (67), one should know Zn, so its
calculation in the main part of this section is unavoidable.
On the other hand, for the intrinsic magnetization M it
is sufficient to replace Zn =⇒ exp(n · x) and use

M ∼=
∫

dnMn exp(n · x)∫
dn exp(n · x)

(70)

which readily yields equation (61) up to a field-
independent term (α� t).

3.5 Local magnetization

The formalism developed above can be applied to study
inhomogeneities in the particle’s magnetization arising as
a consequence of free boundaries. Since in zero field the
standardly defined local induced magnetization mi ≡ 〈si〉
of a finite-size particle vanishes, one has to introduce local
intrinsic magnetization

Mi =
1
M

〈
si ·

1
N
∑
j

sj

〉
· (71)

One can check the identity (1/N )
∑
iMi = M showing the

self-consistency of the definition given above. Adding the
expression within the brackets to the integrand of equa-
tion (15) and repeating all operations, one arrives at the
final low-temperature result

Mi
∼= 1− D − 1

2
T

Z

∫
dnZn

∑
k

′ |fki|2
Ak

, (72)

where Ak and fki are eigenvalues and eigenfunctions of
the linear problem, see equation (26). The latter contain
the information about inhomogeneities in the system. For
periodic boundary conditions, one has fki = e−ikri/

√
N ,

so that |fki| =
√

1/N and there are no inhomogeneities.
Since the parameter t defined by equation (54) is small,
one can expand equation (72) to obtain, to the lowest
order at low temperatures,

Mi
∼= 1− (D − 1)T

2

∑
k

′ |fki|2
Ak

· (73)

Here one can check again (1/N )
∑
iMi = M , where M ∼=

1− t, according to equation (61). For cubic particles with
free boundary conditions, one has fki ≈

√
2/N at the

boundary according to equation (36), which is larger than
the bulk-averaged value. The biggest effect of the surface is
naturally attained at the corners of the cube where Mi ≈
1− 8t.
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4 MC simulations and results

The classical Monte Carlo (MC) method based on the
Metropolis algorithm is now a standard technique (see,
e.g., reference [10] for details). The general idea is to sim-
ulate the statistics of a magnetic system by generating a
Markov chain of spin configurations and taking an average
over the latter. Each step of this chain (a MC step) is a
stochastic transition of the system from one state to an-
other, subjected to the condition of the detailed balance.
Usually a MC step consists in generating a new trial ori-
entation of a spin vector on a lattice site i and calculating
the ensuing energy change ∆E of the system. The trial
configuration is accepted as a new configuration if

exp(−∆E/T ) ≥ R(0, 1), (74)

where R(0, 1) is a random number in the interval [0, 1],
otherwise the old configuration is kept. As follows from
equation (74), for ∆E ≤ 0 the trial orientation is ac-
cepted with a probability 1. The trial orientation can be
a completely random orientation, or a random orienta-
tion in the vicinity of the initial orientation of the spin si,
which is more appropriate at low temperatures. For the
Ising model, the trial orientation is generated by a flip
of si with a probability 1/2. The MC steps are performed
sequentially or randomly for all lattice sites. This con-
ventional version of the MC method is not efficient for
systems of finite size at low temperatures and small fields,
if one is interested in the induced magnetization m. The
Boltzmann distribution over the directions of the parti-
cle’s magnetic moment M of equation (2) is achieved by
rotations of M itself rather than by rotations of individ-
ual spins si. Indeed, each spin si is acted upon by the
strong exchange field HE,i =

∑
j Jijsj ∼ J0, and in the

typical case H � J0 all trial configurations with the di-
rection of si significantly differing from that of its neigh-
bors are rejected with a probability close to 1. Thus in
the standard MC procedure directions of individual spins
can only change little by little, and the resulting change
of M is extremely slow. For the Ising model the situation
is even worse since the spin geometry is discrete and there
are no small changes of spin directions, whereas a flip of
a single spin against the exchange field has an exponen-
tially small probability. Hence if one starts in zero field
with the configuration of all spins up or all spins down,
the magnetization m will practically never relax to zero.
This drawback can be remedied by augmenting the pro-
cedure by a global rotation (GR) of the particle’s spins
to a new trial direction of M and calculating the energy
change. That is, before turning single spins on all lattice
sites, one computes M, generates its new orientation M′

and obtains the energy difference

∆E = −NH · (M′ −M). (75)

If the new orientation is accepted according to equa-
tion (74), one turns all spins si by an appropriate an-
gle and proceeds with the standard Metropolis method
recapitulated above. In small fields (x ≡ NH/T . 1) re-
laxation of the induced magnetization m becomes much
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Fig. 2. Field dependence of the intrinsic magnetization M
and the induced magnetization m of the Ising model on the sc
lattice with fbc for different temperatures.

slower than that of the intrinsic magnetization M, and
one needs much more MC steps to find the former than
the latter with the same precision. If in the procedure
each global rotation is coupled with subsequent turning
of single spins on all lattice sites i, making enough global
rotations to achieve a required precision for m costs much
more computer time for larger particle sizes. Thus a nat-
ural idea is to make many global rotations and gather the
data for m after each GR before proceeding to the con-
ventional (single-spin) part of the Metropolis algorithm.
This improved method is especially fast for the isotropic
Heisenberg or Ising models where the energy change is
given by equation (75) since, after M has been initially
computed, each of its subsequent rotations and calcula-
tions of ∆E requires O(1) operations. In contrast, for sys-
tems with anisotropy one has to perform a sum over all
lattice sites for each orientation of M, i.e., to make O(N )
operations.

Finally, we mention that for the Heisenberg model 53

the running time of our programme with global rotations
on a Pentium III/933 MHz is 160 mn, for a precision of
10−4 − 10−5 on the magnetisation.

Figures 2 and 3 show the results of our MC simulations
for the Ising and Heisenberg models on a cubic lattice with
size N = 53 and free boundary conditions. The intrinsic
magnetization M and induced magnetization m are plot-
ted vs the scaled field x ≡ NH/T for different tempera-
tures. We used the bulk Curie temperatures Tc = θcT

MFA
c ,

where TMFA
c = J0/D is the mean-field Curie tempera-

ture and θc is 0.751 for the Ising model and 0.722 for the
Heisenberg model. One can see that the particle’s mag-
netic moment is aligned and thus m ∼ M for x & 1, if
T � Tc. At T � Tc the field aligns individual spins and
this requires H & T, i.e., x & N . The quadratic depen-
dence of M(H) at small fields, which is phenomenologi-
cally described by equation (8), manifests itself strongly
at elevated temperatures. At low temperatures this depen-
dence is much more difficult to see on the graph because
the field-dependent part of M, which for the Heisenberg
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Fig. 3. Field dependence of the intrinsic magnetization M
and the induced magnetization m of the Heisenberg model on
the sc lattice with fbc for different temperatures.
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Fig. 4. Scaled graph for the induced magnetization m of the
Ising model on the sc lattice with fbc for different tempera-
tures. Theoretical curves at low temperatures, B1(x) = tanhx,
and at high temperatures, B∞(x), are shown by solid lines.

model is given by equation (61), is for x ∼ 1 proportional
to α of equation (54), which is very small. For the Ising
model there is practically no field dependence of M at low
temperatures since M is very close to 1. The weak linear
field dependence of M for the Heisenberg model which
is visible in Figure 3 at T = Tc/4 will be quantitatively
explained below.

Figures 4 and 5 show that the superparamagnetic rela-
tion of equation (1) with the Langevin function BD(x) in
place of F (x) is a very good approximation everywhere be-
low Tc, for both Ising and Heisenberg models. On the other
hand, above Tc equation (1) with the function B∞(x)
of equation (14) is obeyed. The difference between these
limiting expressions decreases with the increasing num-
ber D of spin components and disappears in the spherical
limit (D →∞).

In Figure 6 we compare theoretical predictions of Sec-
tion 3 for the Heisenberg model at T = Tc/4 with our
MC results. For our small size N = 53 the square-root

0 5 10 15 20 25
0,0

0,2

0,4

0,6

0,8

1,0

 T = T
c
/4

 T = T
c
/2

 T = T
c

 T = 2T
c

T = ∞

T = 0

Heisenberg,  N = 5
3

m/M

HNM/T

Fig. 5. Scaled graph for the induced magnetization m of
the Heisenberg model on the sc lattice with fbc for different
temperatures. Theoretical curves at low temperatures, B3(x) =
cothx− 1/x, and at high temperatures, B∞(x), are shown by
solid lines.
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Fig. 6. Comparison of the analytical and MC results for
the field dependence of the magnetizations M and m for the
Heisenberg model at T = Tc/4.

field dependence of the magnetization [the third line of
equation (65)] does not arise and finite-size corrections
are very important. For M one should use equation (61),
where t and α are given by equation (54) with the nu-
merically exact values WN = 1.99 and cN = 1.66 for the
fbc model (cf. Eqs. (49) and (50)). This yields t ' 0.119
and α ' 1.20 × 10−4. The corresponding analytical de-
pendence M(H) is practically a straight line which goes
slightly above the MC points. This small discrepancy can
be explained by the fact that the applicability criterion
of our analytical method, t� 1, is not strongly satisfied.
For comparison we also plotted the theoretical M(H) for
the unrealistic model with periodic boundary conditions.
Here one has WN = 1.25 and cN = 0.20, thus t ' 0.075
and α ' 1.45 × 10−5, so M(H) goes noticeably higher
and with a much smaller slope. The quadratic field de-
pendence of M in the region x . 1 is not seen at this low
temperature since the value of α is very small and thus
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much more accurate MC simulations are needed. We have
not performed these simulations because the correspond-
ing effects are very small. We also plotted in Figure 6 the
field dependence of m given by equation (59) in compari-
son with our MC data. The agreement is reasonably good
for m as well.

5 Discussion

We have performed analytical and numerical investigation
of the magnetic field dependence of the intrinsic magneti-
zation M and induced magnetization m of the Ising and
isotropic classical Heisenberg models on cubic lattices of
finite size. For the latter, we obtained explicit analytical
results for both M(H,T ) and m(H,T ) at low tempera-
tures with the help of a spin-wave theory singling out the
global-rotation mode. These results are in accord with our
MC simulation data.

We investigated the validity of the superparamag-
netic relation m(H,T ) = M(H,T )BD[M(H,T )NH/T ],
where BD(x) is the Langevin function and D is the
number of spin components. Both general arguments of
Section 2 and explicit low-temperature results for the
Heisenberg model show that this is not an exact relation
for any finite D. Nevertheless, it is an extremely good
approximation in the whole range below Tc for not too
small particles, since, for the Heisenberg model, its error
behaves as [T/(J0N)]2, where N is the linear particle size.
For N � 1, a crossover to the high-temperature form of
the relation above, which utilizes the Langevin function of
the spherical model B∞(x), occurs in a close vicinity of Tc.

The difference between the low- and high-temperature
forms of the superparamagnetic relation decreases with
D and disappears in the spherical limit, rendering this
relation exact [8,9].

D.A. Garanin is indebted to the CNRS and Laboratoire de
Magnétisme et d’Optique for the warm hospitality extended to
him during his stay in Versailles in October-December 2000.
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